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Abstract

Recent U.S. Treasury yields have been constrained to some extent by the zero lower bound (ZLB)

on nominal interest rates. In modeling these yields, we compare the performance of a standard

affine Gaussian dynamic term structure model (DTSM), which ignores the ZLB, and a shadow-

rate DTSM, which respects the ZLB. We find that the standard affine model is likely to exhibit

declines in fit and forecast performance with very low interest rates. In contrast, the shadow-rate

model mitigates ZLB problems significantly and we document superior performance for this model

class in the most recent period.
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1 Introduction

With nominal yields on government debt in several countries having fallen very near their zero lower

bound (ZLB), understanding how to model the term structure of interest rates when some of those

interest rates are near the ZLB is an issue that commands attention both for bond portfolio pricing

and risk management and for macroeconomic and monetary policy analysis. The timing of the ZLB

period in the United States can be seen in Figure 1.1 The start of the ZLB period is commonly dated

to December 16, 2008, when the Federal Open Market Committee (FOMC) lowered its target policy

rate—the overnight federal funds rate—to a range of 0 to 1/4 percent.

The key empirical question of the paper is to extract reliable market-based measures of expecta-

tions for future monetary policy when nominal interest rates are near the ZLB. Unfortunately, the

workhorse representation in finance for bond pricing—the affine Gaussian dynamic term structure

model—ignores the ZLB and places positive probabilities on negative interest rates as we will show.

This counterfactual outcome results from ignoring the existence of a readily available currency for

transactions. For in the real world, an investor always has the option of holding cash, and the zero

nominal yield of cash will dominate any security with a negative yield.2 Instead, to handle the

problem of near-zero yields, we rely on the shadow-rate arbitrage-free Nelson-Siegel (AFNS) model

class introduced in Christensen and Rudebusch (2013).3 These are latent-factor models where the

state variables have standard Gaussian dynamics, but the short rate is given an interpretation of a

shadow rate in the spirit of Black (1995) to account for the effect on bond pricing from the existence

of the option to hold currency. As a consequence, the models respect the ZLB. Furthermore, due to

the Gaussian dynamics, these shadow-rate models are as flexible and empirically tractable as regular

AFNS models.

In the empirical analysis, we compare the results from this new shadow-rate AFNS model to

those obtained from a regular AFNS model estimated on the same sample. We find that shadow-rate

models can provide better fit as measured by in-sample metrics such as the RMSEs of fitted yields

and the likelihood values. Still, it is evident from these in-sample results that a standard three-factor

Gaussian dynamic term structure model like our Gaussian three-factor AFNS model has enough

flexibility to fit the cross-section of yields fairly well at each point in time even when the shorter end

of the yield curve is flattened out at the ZLB. However, it is not the case that the Gaussian model

can account for all aspects of the term structure at the ZLB. Indeed, we show that our estimated

three-factor Gaussian model clearly fails along two dimensions. First, despite fitting the yield curve,

1The data are nominal U.S. Treasury zero-coupon yields and described later in the paper.
2Actually, the ZLB can be a somewhat soft floor. The non-negligible costs of transacting in and holding large

amounts of currency have allowed government bond yields to push slightly below zero in a few countries, notably in
Denmark recently. To capture a lower bound on bond yields that depends on institutional frictions, we could replace
the lower bound of zero with some appropriate, possibly time-varying, negative epsilon.

3See Diebold and Rudebusch (2013) for a comprehensive presentation of related applications of the AFNS model.
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Figure 1: Treasury Yields Since 2005.

One- and ten-year weekly U.S. Treasury zero-coupon bond yields from January 7, 2005, to December 28, 2012.

the model cannot capture the dynamics of yields at the ZLB. One stark indication of this is the high

probability the model assigns to negative future short rates—obviously a poor prediction. Second,

the standard model misses the compression of yield volatility that occurs at the ZLB as expected

future short rates are pinned near zero, longer-term rates fluctuate less. The shadow-rate model,

even without incorporating stochastic volatility, can capture this effect. In terms of forecasting future

short rates, we first establish that the regular AFNS model is competitive over the normal period

from 1995 to 2008. Thus, this model could have been expected to continue to perform well in the

most recent period, if only it had not been for the problems associated with the ZLB. Second, we

show that during the most recent period the shadow-rate model stands out in terms of forecasting

future short rates in addition to performing on par with the regular model during the normal period.

Third, the deterioration in short rate forecasts implies that the regular model delivers exaggerated

estimates of the policy expectations embedded in the yield curve in recent years. In turn, this

leads us to conclude that its term premium estimates are artificially low during that period.4 As a

consequence of these findings combined, we recommend to use a shadow-rate modeling approach not

only when yields are as low as they were towards the end of our sample, but in general.

4Ichiue and Ueno (2013) also compare standard and shadow-rate Gaussian models for U.S. Treasury data and find
deterioration in the performance of their standard model during the most recent period. However, they only study
two-factor models.
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Finally, we should mention two alternative frameworks to modeling yields near the ZLB that

guarantee positive interest rates: stochastic-volatility models with square-root processes and Gaus-

sian quadratic models. Both of these approaches suffer from the theoretical weakness that they treat

the ZLB as a reflecting barrier and not as an absorbing one as in the shadow-rate model. Empir-

ically, of course, the recent prolonged period of very low interest rates seem more consistent with

an absorbing state. In addition, Dai and Singleton (2002) disparage the fit of stochastic-volatility

models, while Kim and Singleton (2012) compare quadratic and shadow-rate empirical representa-

tions and find a slight preference for the latter. Still, we consider all three modeling approaches to

be worthy of further investigation, but we view the shadow-rate model to be of particular interest

because away from the ZLB it reduces exactly to the standard Gaussian affine model, which is by

far the most popular dynamic term structure model. Therefore, the entire voluminous literature on

affine Gaussian models remains completely applicable and relevant when given a modest shadow-rate

tweak to handle the ZLB.

The rest of the paper is structured as follows. Section 2 describes Gaussian models in general as

well as a specific empirical Gaussian model that we consider, while Section 3 details our shadow-rate

model. Section 4 contains our empirical findings and discusses the implications for assessing policy

expectations and term premiums in the current low-yield environment. Section 5 concludes. Two

appendices contain additional technical details.

2 A Standard Gaussian Term Structure Model

In this section, we provide an overview of the affine Gaussian term structure model, which ignores

the ZLB, and describe an empirical example of this model.

2.1 The General Model

Let Pt(τ) be the price of a zero-coupon bond at time t that pays $1, at maturity t + τ . Under

standard assumptions, this price is given by

Pt(τ) = EP
t

[Mt+τ

Mt

]
,

where the stochastic discount factor, Mt, denotes the value at time t0 of a claim at a future date t, and

the superscript P refers to the actual, or real-world, probability measure underlying the dynamics

of Mt. (As we will discuss in the next section, there is no restriction in this standard setting to

constrain Pt(τ) from rising above its par value; that is, the ZLB is ignored.)

We follow the usual reduced-form empirical finance approach that models bond prices with un-

observable (or latent) factors, here denoted as Xt, and the assumption of no residual arbitrage
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opportunities. We assume that Xt follows an affine Gaussian process with constant volatility, with

dynamics in continuous time given by the solution to the following stochastic differential equation

(SDE):

dXt = KP (θP −Xt)dt+ΣdWP
t ,

where KP is an n × n mean-reversion matrix, θP is an n × 1 vector of mean levels, Σ is an n × n

volatility matrix, and WP
t is an n-dimensional Brownian motion. The dynamics of the stochastic

discount function are given by

dMt = rtMtdt+ Γ′

tMtdW
P
t ,

and the instantaneous risk-free rate, rt, is assumed affine in the state variables

rt = δ0 + δ′1Xt,

where δ0 ∈ R and δ1 ∈ Rn. The risk premiums, Γt, are also affine

Γt = γ0 + γ1Xt,

where γ0 ∈ Rn and γ1 ∈ Rn×n.

Duffie and Kan (1996) show that these assumptions imply that zero-coupon yields are also affine

in Xt:

yt(τ) = −1

τ
A(τ)− 1

τ
B(τ)′Xt,

where A(τ) and B(τ) are given as solutions to the following system of ordinary differential equations

dB(τ)

dτ
= −δ1 − (KP +Σγ1)

′B(τ), B(0) = 0,

dA(τ)

dτ
= −δ0 +B(τ)′(KP θP − Σγ0) +

1

2

n∑

j=1

[
Σ′B(τ)B(τ)′Σ

]
j,j
, A(0) = 0.

Thus, the A(τ) and B(τ) functions are calculated as if the dynamics of the state variables had a

constant drift term equal to KP θP − Σγ0 instead of the actual KP θP and a mean-reversion matrix

equal to KP + Σγ1 as opposed to the actual KP . The probability measure with these alternative

dynamics is frequently referred to as the risk-neutral, or Q, probability measure since the expected

return on any asset under this measure is equal to the risk-free rate rt that a risk-neutral investor

would demand. The difference is determined by the risk premium Γt and reflects investors’ aversion

to the risks embodied in Xt.
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Finally, we define the term premium as

TPt(τ) = yt(τ)−
1

τ

∫ t+τ

t

EP
t [rs]ds. (1)

That is, the term premium is the difference in expected return between a buy and hold strategy for

a τ -year Treasury bond and an instantaneous rollover strategy at the risk-free rate rt.

2.2 An Empirical Affine Model

A wide variety of Gaussian term structure models have been estimated. Here, we describe an em-

pirical representation from the literature that uses high-frequency observations on U.S. yields from a

sample that includes the recent ZLB period. It improves the econometric identification of the latent

factors, which facilitates model estimation.5 The Gaussian term structure model we consider is an

update of the one used by Christensen and Rudebusch (2012). This “CR model” is an arbitrage-free

Nelson-Siegel (AFNS) representation with three latent state variables, Xt = (Lt, St, Ct). These are

described by the following system of SDEs under the risk-neutral Q-measure:6




dLt

dSt

dCt


 =




0 0 0

0 λ −λ

0 0 λ










θQ1

θQ2

θQ3


−




Lt

St

Ct





 dt+Σ




dWL,Q
t

dW S,Q
t

dWC,Q
t


 , λ > 0, (2)

where Σ is the constant covariance (or volatility) matrix.

In addition, the instantaneous risk-free rate is defined by

rt = Lt + St. (3)

This specification implies that zero-coupon bond yields are given by

yt(τ) = Lt +
(1− e−λτ

λτ

)
St +

(1− e−λτ

λτ
− e−λτ

)
Ct −

A(τ)

τ
, (4)

where the factor loadings in the yield function match the level, slope, and curvature loadings in-

troduced in Nelson and Siegel (1987). The final yield-adjustment term, A(τ)/τ , captures convexity

effects due to Jensen’s inequality.

The model is completed with a risk premium specification that connects the factor dynamics to

5Difficulties in estimating Gaussian term structure models are discussed in Christensen et al. (2011), who propose
using a Nelson-Siegel structure to avoid them.

6Two details regarding this specification are discussed in Christensen et al. (2011). First, with a unit root in the
level factor under the pricing measure, the model is not arbitrage-free with an unbounded horizon; therefore, as is often
done in theoretical discussions, we impose an arbitrary maximum horizon. Second, we identify this class of models by
fixing the θQ means under the Q-measure at zero without loss of generality.
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the dynamics under the real-world P -measure.7 The maximally flexible specification of the AFNS

model has P -dynamics given by8




dLt

dSt

dCt


 =




κP
11

κP
12

κP
13

κP
21

κP
22

κP
23

κP
31

κP
32

κP
33










θP
1

θP
2

θP
3


 −




Lt

St

Ct





 dt+




σ11 0 0

σ21 σ22 0

σ31 σ32 σ33







dWL,P
t

dWS,P
t

dWC,P
t


 . (5)

Using both in- and out-of-sample performance measures, CR went through a careful empirical

analysis to justify various zero-value restrictions on the KP matrix. Imposing these restrictions

results in the following dynamic system for the P -dynamics:




dLt

dSt

dCt


 =




10−7 0 0

κP21 κP22 κP23

0 0 κP33










0

θP2

θP3


−




Lt

St

Ct





 dt+Σ




dWL,P
t

dW S,P
t

dWC,P
t


 , (6)

where the covariance matrix Σ is assumed diagonal and constant. Note that in this specification, the

Nelson-Siegel level factor is restricted to be an independent unit-root process under both probability

measures.9 As discussed in CR, this restriction helps improve forecast performance independent

of the specification of the remaining elements of KP . Because interest rates are highly persistent,

empirical autoregressive models, including DTSMs, suffer from substantial small-sample estimation

bias. Specifically, model estimates will generally be biased toward a dynamic system that displays

much less persistence than the true process (so estimates of the real-world mean-reversion matrix,

KP , are upward biased). Furthermore, if the degree of interest rate persistence is underestimated,

future short rates would be expected to revert to their mean too quickly causing their expected

longer-term averages to be too stable. Therefore, the bias in the estimated dynamics distorts the

decomposition of yields and contaminates estimates of long-maturity term premia. As described in

detail in Bauer et al. (2012), bias-corrected KP estimates are typically very close to a unit-root

process, so we view the imposition of the unit-root restriction as a simple shortcut to overcome

small-sample estimation bias.

We re-estimated this CR model over a larger sample of weekly nominal U.S. Treasury zero-

coupon yields from January 4, 1985, until December 28, 2012, for eight maturities: three months,

six months, one year, two years, three years, five years, seven years, and ten years.10 The model

7It is important to note that there are no restrictions on the dynamic drift components under the empirical P -
measure beyond the requirement of constant volatility. To facilitate empirical implementation, we use the essentially
affine risk premium introduced in Duffee (2002).

8As noted in Christensen et al. (2011), the unconstrained AFNS model has a sign restriction and three parameters
less than the standard canonical three-factor Gaussian DTSM.

9Due to the unit-root property of the first factor, we can arbitrarily fix its mean at θP1 = 0.
10The yield data include three- and six-month Treasury bill yields from the H.15 series from the Federal Reserve
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KP KP
·,1 KP

·,2 KP
·,3 θP Σ

KP
1,· 10−7 0 0 0 σ11 0.0065

(0.0001)
KP

2,· 0.3753 0.4073 -0.4277 0.0319 σ22 0.0100

(0.1319) (0.1171) (0.0857) (0.0270) (0.0002)
KP

3,· 0 0 0.6371 -0.0237 σ33 0.0272

(0.1607) (0.0073) (0.0004)

Table 1: Parameter Estimates for the CR Model.

The estimated parameters of the KP matrix, θP vector, and diagonal Σ matrix are shown for the CR model.

The estimated value of λ is 0.4455 (0.0023). The numbers in parentheses are the estimated parameter standard

deviations. The maximum log likelihood value is 66,388.06.

parameter estimates are reported in Table 1. As in CR, we tested the significance of the four

parameter restrictions imposed on KP in the CR model relative to the unrestricted AFNS model.11

As before, we found that the four parameter restrictions are not rejected by the data; thus, the CR

model appears flexible enough to capture the relevant information in the data compared with an

unrestricted model.

2.3 Negative Short-Rate Projections in Standard Models

Before turning to the description of the shadow rate model, it is useful to reinforce the basic motiva-

tion for our analysis by examining short rate forecasts from the estimated CR model. With regard to

short rate forecasts, any standard affine Gaussian dynamic term structure model may place positive

probabilities on future negative interest rates. Accordingly, Figure 2 shows the probability obtained

from the CR model that the short rate three months out will be negative. Prior to 2008 the prob-

abilities of future negative interest rates are negligible except for a brief period in 2003 and 2004

when the Fed’s policy rate temporarily stood at one percent. However, near the ZLB—since late

2008—the model is typically predicting substantial likelihoods of impossible realizations.

3 A Shadow-Rate Model

In this section, we describe an option-based approach to the shadow-rate model and estimate a

shadow-rate analog to the CR model with U.S. data.

Board as well as off-the-run Treasury zero-coupon yields for the remaining maturities from the Gürkaynak et al. (2007)
database, which is available at http://www.federalreserve.gov/pubs/feds/2006/200628/200628abs.html.

11That is, a test of the joint hypothesis κP
12 = κP

13 = κP
31 = κP

32 = 0 using a standard likelihood ratio test.
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Figure 2: Probability of Negative Short Rates Since 2008.

Illustration of the conditional probability of negative short rates three months ahead from the CR model.

3.1 The Option-Based Approach to the Shadow-Rate Model

The concept of a shadow interest rate as a modeling tool to account for the ZLB can be attributed to

Black (1995). He noted that the observed nominal short rate will be nonnegative because currency

is a readily available asset to investors that carries a nominal interest rate of zero. Therefore, the

existence of currency sets a zero lower bound on yields. To account for this ZLB, Black postulated

as a modeling tool a shadow short rate, st, that is unconstrained by the ZLB. The usual observed

instantaneous risk-free rate, rt, which is used for discounting cash flows when valuing securities, is

then given by the greater of the shadow rate or zero:

rt = max{0, st}. (7)

Accordingly, as st falls below zero, the observed rt simply remains at the zero bound.

While Black (1995) described circumstances under which the zero bound on nominal yields might

be relevant, he did not provide specifics for implementation. Gorovoi and Linetsky (2004) derive

bond price formulas for the case of one-factor Gaussian and square-root shadow-rate models.12 Un-

fortunately, their results do not extend to multidimensional models. Instead, the small set of previous

12Ueno, Baba, and Sakurai (2006) use these formulas when calibrating a one-factor Gaussian model to a sample of
Japanese government bond yields.
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research on shadow-rate models has relied on numerical methods for pricing.13 However, in light of

the computational burden of these methods, there have been only two previous estimations of mul-

tifactor shadow-rate models: Ichiue and Ueno (2007) and Kim and Singleton (2012). Both of these

studies undertake a full maximum likelihood estimation of their two-factor Gaussian shadow-rate

models on Japanese bond yield data using the extended Kalman filter and numerical optimization.

To overcome the curse of dimensionality that limits numerical-based estimation of shadow-rate

models, Krippner (2013) suggested an alternative option-based approach that makes shadow-rate

models almost as easy to estimate as the corresponding non-shadow-rate model. To illustrate this

approach, consider two bond-pricing situations: one without currency as an alternative asset and the

other that has a currency in circulation that has a constant nominal value and no transaction costs.

In the world without currency, the price of a shadow-rate zero-coupon bond, Pt(τ), may trade above

par, that is, its risk-neutral expected instantaneous return equals the risk-free shadow short rate, st,

which may be negative. In contrast, in the world with currency, the price at time t for a zero-coupon

bond that pays $1 when it matures in τ years is given by P t(τ). This price will never rise above par,

so nonnegative yields will never be observed.

Now consider the relationship between the two bond prices at time t for the shortest (say,

overnight) maturity available, δ. In the presence of currency, investors can either buy the zero-

coupon bond at price Pt(δ) and receive one unit of currency the following day or just hold the

currency. As a consequence, this bond price, which would equal the shadow bond price, must be

capped at 1:

P t(δ) = min{1, Pt(δ)}

= Pt(δ) −max{Pt(δ) − 1, 0}.

That is, the availability of currency implies that the overnight claim has a value equal to the zero-

coupon shadow bond price minus the value of a call option on the zero-coupon shadow bond with a

strike price of 1. More generally, we can express the price of a bond in the presence of currency as

the price of a shadow bond minus the call option on values of the bond above par:

P t(τ) = Pt(τ)− CA
t (τ, τ ; 1), (8)

where CA
t (τ, τ ; 1) is the value of an American call option at time t with maturity in τ years and strike

price 1 written on the shadow bond maturing in τ years. In essence, in a world with currency, the

bond investor has had to sell off the possible gain from the bond rising above par at any time prior

to maturity.

13Both Kim and Singleton (2012) and Bomfim (2003) use finite-difference methods to calculate bond prices, while
Ichiue and Ueno (2007) employ interest rate lattices.
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Unfortunately, analytically valuing this American option is complicated by the difficulty in de-

termining the early exercise premium. However, Krippner (2013) argues that there is an analytically

close approximation based on tractable European options. Specifically, he argues that the above

discussion suggests that the last incremental forward rate of any bond will be nonnegative due to

the future availability of currency in the immediate time prior to its maturity. As a consequence, he

introduces the following auxiliary bond price equation

P aux.
t (τ, τ + δ) = Pt(τ + δ)− CE

t (τ, τ + δ; 1), (9)

where CE
t (τ, τ + δ; 1) is the value of a European call option at time t with maturity t+ τ and strike

price 1 written on the shadow discount bond maturing at t + τ + δ. It should be stressed that

P aux.
t (τ, τ + δ) is not identical to the bond price P t(τ) in equation (8) whose yield observes the zero

lower bound.

The key insight of Krippner is that the last incremental forward rate of any bond will be nonnega-

tive due to the future availability of currency in the immediate time prior to its maturity. In Equation

(9), this is obtained by letting δ → 0, which identifies the corresponding nonnegative instantaneous

forward rate:

f
t
(τ) = lim

δ→0

[
− ∂

∂δ
lnP aux.

t (τ, τ + δ)
]
. (10)

Now, the discount bond prices whose yields observe the zero lower bound are approximated by

P app.
t (τ) = e−

∫ t+τ

t
f
t
(s)ds. (11)

The auxiliary bond price drops out of the calculations, and we are left with formulas for the nonneg-

ative forward rate, f
t
(τ), that are solely determined by the properties of the shadow rate process st.

Specifically, Krippner (2013) shows that

f
t
(τ) = ft(τ) + zt(τ),

where ft(τ) is the instantaneous forward rate on the shadow bond, which may go negative, while

zt(τ) is given by

zt(τ) = lim
δ→0

[
∂

∂δ

CE
t (τ, τ + δ; 1)

Pt(τ + δ)

]
. (12)

In addition, it holds that the observed instantaneous risk-free rate respects the nonnegativity equation

(7) as in the Black (1995) model.
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Finally, yield-to-maturity is defined the usual way as

y
t
(τ) =

1

τ

∫ t+τ

t

f
t
(s)ds

=
1

τ

∫ t+τ

t

ft(s)ds +
1

τ

∫ t+τ

t

lim
δ→0

[ ∂

∂δ

CE
t (s, s+ δ; 1)

Pt(s+ δ)

]
ds

= yt(τ) +
1

τ

∫ t+τ

t

lim
δ→0

[ ∂

∂δ

CE
t (s, s+ δ; 1)

Pt(s+ δ)

]
ds.

It follows that bond yields constrained at the ZLB can be viewed as the sum of the yield on the

unconstrained shadow bond, denoted yt(τ), which is modeled using standard tools, and an add-on

correction term derived from the price formula for the option written on the shadow bond that

provides an upward push to deliver the higher nonnegative yields actually observed.

It is important to stress that since the observed discount bond prices defined in equation (11)

differ from the auxiliary bond price P aux.
t (τ, τ+δ) defined in equation (9) and used in the construction

of the nonnegative forward rate in equation (10), the Krippner (2013) framework should be viewed as

not fully internally consistent and simply an approximation to an arbitrage-free model.14 Of course,

away from the ZLB, with a negligible call option, the model will match the standard arbitrage-free

term structure representation. In addition, the size of the approximation error near the ZLB can be

determined via simulation as we will demonstrate below.

3.2 The Shadow-Rate B-CR Model

In theory, the option-based shadow-rate result is quite general and applies to any assumptions made

about the dynamics of the shadow-rate process. However, as implementation requires the calculation

of the limit in equation (12), the option-based shadow-rate models are limited practically to the

Gaussian model class. The AFNS class is well suited for this extension.15 In the shadow-rate AFNS

model, the affine short rate equation (3) is replaced by the nonnegativity constraint and the shadow

risk-free rate, which is defined as the sum of level and slope as in the original AFNS model class:

rt = max{0, st}, st = Lt + St.

All other elements of the model remain the same. Namely, the dynamics of the state variables used

for pricing under the Q-measure remain as described in equation (2), so the yield on the shadow

14In particular, there is no explicit PDE that bond prices must satisfy, including boundary conditions, for the absence
of arbitrage as in Kim and Singleton (2012).

15For details of the derivations, see Christensen and Rudebusch (2013).
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discount bond maintains the popular Nelson and Siegel (1987) factor loading structure

yt(τ) = Lt +

(
1− e−λτ

λτ

)
St +

(
1− e−λτ

λτ
− e−λτ

)
Ct −

A(τ)

τ
, (13)

where A(τ)/τ is the same maturity-dependent yield-adjustment term.

The corresponding instantaneous shadow forward rate is given by

ft(τ) = − ∂

∂T
lnPt(τ) = Lt + e−λτSt + λτe−λτCt +Af (τ), (14)

where the yield-adjustment term in the instantaneous forward rate function is given by

Af (τ) = −∂A(τ)

∂τ

= −1

2
σ2
11τ

2 − 1

2
(σ2

21 + σ2
22)

(1− e−λτ

λ

)2

−1

2
(σ2

31 + σ2
32 + σ2

33)
[ 1

λ2
− 2

λ2
e−λτ − 2

λ
τe−λτ +

1

λ2
e−2λτ +

2

λ
τe−2λτ + τ2e−2λτ

]

−σ11σ21τ
1− e−λτ

λ
− σ11σ31

[1
λ
τ − 1

λ
τe−λτ − τ2e−λτ

]

−(σ21σ31 + σ22σ32)
[ 1

λ2
− 2

λ2
e−λτ − 1

λ
τe−λτ +

1

λ2
e−2λτ +

1

λ
τe−2λτ

]
.

Krippner (2013) provides a formula for the zero lower bound instantaneous forward rate, f
t
(τ),

that applies to any Gaussian model

f
t
(τ) = ft(τ)Φ

(ft(τ)
ω(τ)

)
+ ω(τ)

1√
2π

exp
(
− 1

2

[ft(τ)
ω(τ)

]2)
,

where Φ(·) is the cumulative probability function for the standard normal distribution, ft(τ) is the

shadow forward rate, and ω(τ) is related to the conditional variance, v(τ, τ + δ), appearing in the

shadow bond option price formula as follows

ω(τ)2 =
1

2
lim
δ→0

∂2v(τ, τ + δ)

∂δ2
.
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KP KP
·,1 KP

·,2 KP
·,3 θP Σ

KP
1,· 10−7 0 0 0 σ11 0.0067

(0.0001)
KP

2,· 0.2892 0.3402 -0.3777 0.0214 σ22 0.0108

(0.1533) (0.1334) (0.0908) (0.0343) (0.0002)
KP

3,· 0 0 0.5153 -0.0271 σ33 0.0262

(0.1252) (0.0085) (0.0004)

Table 2: Parameter Estimates for the B-CR Model.

The estimated parameters of the KP matrix, θP vector, and diagonal Σ matrix are shown for the B-CR model.

The estimated value of λ is 0.4673 (0.0027). The numbers in parentheses are the estimated parameter standard

deviations. The maximum log likelihood value is 66,755.04.

Within the shadow-rate AFNS model, ω(τ) takes the following form

ω(τ)2 = σ2
11τ + (σ2

21 + σ2
22)

1− e−2λτ

2λ

+(σ2
31 + σ2

32 + σ2
33)

[1− e−2λτ

4λ
− 1

2
τe−2λτ − 1

2
λτ2e−2λτ

]

+2σ11σ21
1− e−λτ

λ
+ 2σ11σ31

[
− τe−λτ +

1− e−λτ

λ

]

+(σ21σ31 + σ22σ32)
[
− τe−2λτ +

1− e−2λτ

2λ

]
.

Therefore, the zero-coupon bond yields that observe the zero lower bound, denoted y
t
(τ), are easily

calculated as

y
t
(τ) =

1

τ

∫ t+τ

t

[
ft(s)Φ

(ft(s)
ω(s)

)
+ ω(s)

1√
2π

exp
(
− 1

2

[ft(s)
ω(s)

]2)
]
ds. (15)

As in the affine AFNS model, the shadow-rate AFNS model is completed by specifying the price

of risk using the essentially affine risk premium specification introduced by Duffee (2002), so the real-

world dynamics of the state variables can be expressed as equation (5). Again, in an unrestricted

case, both KP and θP are allowed to vary freely relative to their counterparts under the Q-measure.

However, we focus on the case with the same KP and θP restrictions as in the CR model on the

assumption that outside of the ZLB period, the shadow-rate model would properly collapse to the

standard CR form. We label this shadow-rate model the “B-CR model.”

We estimate the B-CR model from January 4, 1985, until December 28, 2012, for eight maturities:

three months, six months, one year, two years, three years, five years, seven years, and ten years.16

16Due to the nonlinear measurement equation for the yields in the shadow-rate AFNS model, estimation is based on
the standard extended Kalman filter as described in Christensen and Rudebusch (2013). We also estimated unrestricted
and independent factor shadow-rate AFNS models and obtained similar results to those reported below.
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The estimated B-CR model parameters are reported in Table 2. In comparing the estimated B-CR

and CR model parameters, we note that none of the parameters are statistically significantly different

from the corresponding parameter in the other model with the exception of λ, which is statistically,

but not economically, different across the two models. Hence, for parsimoniously specified Gaus-

sian models, we conjecture that the differences in the estimated parameters between two otherwise

identical models that are only distinguished by one being a standard model and the other being a

shadow-rate model would tend to be small.

3.3 How Good is the Option-Based Approximation?

As noted in Section 3.1, Krippner (2013) does not provide a formal derivation of arbitrage-free

pricing relationships for the option-based approach. Therefore, in this subsection, we analyze how

closely the option-based bond pricing from the estimated B-CR model matches an arbitrage-free

bond pricing that is obtained from the same model using Black’s (1995) approach based on Monte

Carlo simulations. The simulation-based shadow yield curve is obtained from 50,000 ten-year long

factor paths generated using the estimated Q-dynamics of the state variables in the B-CR model,

which, ignoring the nonnegativity equation (7), are used to construct 50,000 paths for the shadow

short rate. These are converted into a corresponding number of shadow discount bond paths and

averaged for each maturity before the resulting shadow discount bond prices are converted into yields.

The simulation-based yield curve is obtained from the same underlying 50,000 Monte Carlo factor

paths, but at each point in time in the simulation, the resulting short rate is constrained by the

nonnegativity equation (7) as in Black (1995). The shadow-rate curve from the B-CR model can

also be calculated analytically via the usual affine pricing relationships, which ignore the ZLB. Thus,

any difference between these two curves is simply numerical error that reflects the finite number of

simulations.

To document that the close match between the option-based and the simulation-based yield curves

is not limited to any specific date where the ZLB of nominal yields is likely to have mattered, we

undertake this simulation exercise for the last observation date in each year since 2007.17 Table 3

reports the resulting shadow yield curve differences and yield curve differences for various maturities

on these 7 dates. Note that the errors for the shadow yield curves solely reflect simulation error as

the model-implied shadow yield curve is identical to the analytical arbitrage-free curve that would

prevail without currency in circulation. These simulation errors in Table 3 are typically very small

in absolute value, and they increase only slowly with maturity. Their average absolute value—shown

in the bottom row—is less than one basis point even at a ten-year maturity. This implies that using

simulations with a large number of draws (N = 50,000) arguably delivers enough accuracy for the

17Of course, away from the ZLB, with a negligible call option, the model will match the standard arbitrage-free term
structure representation.
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Maturity in months
Dates

12 36 60 84 120

Shadow yields 0.09 -0.11 0.04 -0.06 -0.35
12/29/06

Yields 0.12 -0.11 0.08 0.15 0.17

Shadow yields 0.30 0.31 0.09 0.06 0.23
12/28/07

Yields 0.35 0.37 0.30 0.44 0.84

Shadow yields 0.09 0.81 1.04 0.74 0.24
12/26/08

Yields 0.13 0.83 1.66 1.91 2.02

Shadow yields 0.29 0.24 0.38 0.58 0.75
12/31/09

Yields 0.25 0.43 0.81 1.18 1.50

Shadow yields -0.31 -0.37 0.26 0.95 1.44
12/31/10

Yields -0.24 0.06 1.08 2.05 2.83

Shadow yields 0.14 0.08 -0.45 -0.66 -0.77
12/30/11

Yields 0.16 0.51 0.99 1.69 2.74

Shadow yields -0.23 -0.16 0.14 -0.09 -0.18
12/28/12

Yields -0.03 0.27 1.35 2.13 3.25

Average Shadow yields 0.21 0.30 0.34 0.45 0.57
abs. diff. Yields 0.18 0.37 0.90 1.36 1.91

Table 3: Approximation Errors in Yields for Shadow-Rate Model.

At each date, the table reports differences between the analytical shadow yield curve obtained from the

option-based estimates of the B-CR model and the shadow yield curve obtained from 50,000 simulations of

the estimated factor dynamics under the Q-measure in that model. The table also reports for each date the

corresponding differences between the fitted yield curve obtained from the B-CR model and the yield curve

obtained via simulation of the estimated B-CR model with imposition of the ZLB. The bottom two rows give

averages of the absolute differences across the 7 dates. All numbers are measured in basis points.

type of inference we want to make here.

Given this calibration of the size of the numerical errors involved in the simulation, we can now

assess the more interesting size of the approximation error in the option-based approach to valuing

yields in the presence of the ZLB. In Table 3, the errors of the fitted B-CR model yield curves relative

to the simulated results are only slightly larger than those reported for the shadow yield curve. In

particular, for maturities up to five years, the errors tend to be less than 1 basis point, so the option-

based approximation error adds very little if anything to the numerical simulation error. At the

ten-year maturity, the approximation errors are understandably larger, but even the largest errors at

the ten-year maturity do not exceed 4 basis points in absolute value and the average absolute value

is less than 2 basis points. Overall, the option-based approximation errors in our three-factor setting

appear relatively small. Indeed, they are smaller than the fitted errors to be reported in Table 4.

That is, for the B-CR model analyzed here, the gain from using a numerical estimation approach

instead of the option-based approximation would in all likelihood be negligible.
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Figure 3: Value of Option to Hold Currency.

We show time-series plots of the value of the option to hold currency embedded in the Treasury yield curve

as estimated in real time by the B-CR model. The data cover the period from January 6, 1995, to December

28, 2012.

3.4 Measuring the Effect of the ZLB

To provide evidence that we should anticipate to see at least some difference across the regular

and shadow-rate models, we turn our focus to the value of the option to hold currency, which we

define as the difference between the yields that observe the zero lower bound and the comparable

lower shadow discount bond yields that do not. Figure 3 shows these yield spreads at the five-

and ten-year maturity based on real-time rolling weekly re-estimations of the B-CR model starting

in 1995 through 2012. Beyond a few very temporary small spikes, the option was of economically

insignificant value prior to the failure of Lehman Brothers in the fall of 2008.18 However, despite

the zero short rate since 2008, it is not really until August 2011 that the option obtains significant

sustained value. At the end of our sample, the yield spread is 80 and 60 basis points at the five- and

ten-year maturity, respectively. Option values at those levels suggest that it should matter for model

performance whether a model accounts for the ZLB of nominal yields.

18Consistent with our series for the 2003-period, Bomfim (2003) in his calibration of a two-factor shadow-rate model
to U.S. interest rate swap data reports a probability of hitting the zero-boundary within the next two years equaling
3.6 percent as of January 2003. Thus, it appears that there was never any material risk of reaching the ZLB during
the 2003-2004 period of low interest rates.

16



Full sample

Maturity in months All
RMSE

3 6 12 24 36 60 84 120 yields
CR 31.45 15.23 0.0 2.41 0.00 3.02 2.74 10.59 13.02
B-CR 30.89 14.74 0.7 2.27 0.25 2.74 2.43 10.10 12.71

Normal period (Jan. 6, 1995-Dec. 12, 2008)
Maturity in months All

RMSE
3 6 12 24 36 60 84 120 yields

CR 32.73 15.65 0.00 2.51 0.00 3.00 2.56 10.56 13.46
B-CR 32.74 15.53 0.59 2.40 0.09 2.83 2.23 10.49 13.43

ZLB period (Dec. 19, 2008-Dec. 28, 2012)
Maturity in months All

RMSE
3 6 12 24 36 60 84 120 yields

CR 22.40 12.53 0.00 1.73 0.00 3.11 3.66 10.78 10.01
B-CR 16.03 8.75 1.15 1.23 0.61 2.13 3.37 7.37 7.13

Table 4: Summary Statistics of the Fitted Errors.

The root mean squared fitted errors (RMSEs) for the CR and B-CR model are shown. All numbers are

measured in basis points. The data covers the period from January 6, 1985, to December 28, 2012.

4 Comparing Affine and Shadow-Rate Models

In this section, we compare the empirical affine and shadow-rate models across a variety of dimensions,

including in-sample fit, volatility dynamics, and out-of-sample forecast performance.

4.1 In-Sample Fit and Volatility

The summary statistics of the model fit are reported in Table 4 and indicate a very similar fit of

the two models in the normal period up until the end of 2008. However, since then we see a notable

advantage to the shadow-rate model that is also reflected in the likelihood values. Still, we conclude

from this in-sample analysis that it is not in the model parameters nor in the model fit that the

shadow-rate model really distinguishes itself from its regular cousin.

A serious limitation of standard Gaussian models is the assumption of constant yield volatility,

which is particularly unrealistic when periods of normal volatility are combined with periods in which

yields are greatly constrained in their movements near the ZLB. A shadow-rate model approach can

mitigate this failing significantly.

In the CR model, where zero-coupon yields are affine functions of the state variables, model-
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Figure 4: Three-Month Conditional Volatility of Two-Year Yield Since 2009.

Illustration of the three-month conditional volatility of the two-year yield implied by the estimated CR and

B-CR model. Also shown is the subsequent three-month realized volatility of the two-year yield based on daily

data.

implied conditional predicted yield volatilities are given by the square root of

V P
t [yNT (τ)] =

1

τ2
B(τ)′V P

t [XT ]B(τ),

where T−t is the prediction period, τ is the yield maturity, and V P
t [XT ] is the conditional covariance

matrix.19 In the B-CR model, on the other hand, zero-coupon yields are non-linear functions of the

state variables and conditional predicted yield volatilities have to be generated by standard Monte

Carlo simulation. Figure 4 shows the implied three-month conditional yield volatility of the two-year

yield from the CR and B-CR models.

To evaluate the fit of these predicted three-month-ahead conditional yield standard deviations,

they are compared to a standard measure of realized volatility based on the same data used in

the model estimation, but at daily frequency. The realized standard deviation of the daily changes

in the interest rates are generated for the 91-day period ahead on a rolling basis. The realized

variance measure is used by Andersen and Benzoni (2010), Collin-Dufresne et al. (2009), as well

as Jacobs and Karoui (2009) in their assessments of stochastic volatility models. This measure is

19The conditional covariance matrix is calculated using the analytical solutions provided in Fisher and Gilles (1996).
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fully nonparametric and has been shown to converge to the underlying realization of the conditional

variance as the sampling frequency increases; see Andersen et al. (2003) for details. The square root

of this measure retains these properties. For each observation date t the number of trading days

N during the subsequent 91-day time window is determined and the realized standard deviation is

calculated as

RV STD
t,τ =

√√√√
N∑

n=1

∆y2t+n(τ),

where ∆yt+n(τ) is the change in yield y(τ) from trading day t+ (n− 1) to trading day t+ n.20

While the conditional yield volatility from the CR model only change little (due to updating of

its estimated parameters), the conditional yield volatility from the B-CR model closely matches the

realized volatility series.21

4.2 Forecast Performance

To extract the term premiums embedded in the Treasury yield curve is ultimately an exercise in

forecasting policy expectations. Thus, to study bond investors’ expectations in real time, we perform

a rolling re-estimation of the CR model and its shadow-rate equivalent on expanding samples—adding

one week of observations each time, a total of 939 estimations. As a result, the end dates of the

expanding samples run from January 6, 1995, to December 28, 2012. For each end date during that

period, we project the short rate six months and one year ahead. Importantly, the estimates of these

objects rely essentially only on information that was available in real time.

For robustness, we include results from another established U.S. Treasury term structure model

introduced in Kim and Wright (2005, henceforth KW). It is a standard latent three-factor Gaussian

term structure model of the kind described in Section 2.1.22 This model is updated on an ongoing

basis by the staff of the Federal Reserve Board.23 However, we emphasize that the forecasts from

this model are not real-time forecasts, but based on the full sample estimate.

As yields were both economically and statistically far away from the zero lower bound prior

to December 2008, it seems reasonable to distinguish between model performance in the normal

period prior to the policy rate reaching its effective lower bound and the period after it. For the

20Note that other measures of realized volatility have been used in the literature, such as the realized mean absolute
deviation measure as well as fitted GARCH estimates. Collin-Dufresne et al. (2009) also use option-implied volatility
as a measure of realized volatility.

21In their analysis of Japanese government bond yields, Kim and Singleton (2012) also report a close match to yield
volatilities for their Gaussian shadow-rate model.

22The KW model is estimated using one-, two-, four-, seven-, and ten-year off-the-run Treasury zero-coupon yields
from the Gürkaynak et al. (2007) database, as well as three- and six-month Treasury bill yields. To facilitate empirical
implementation, model estimation includes monthly data on the six- and twelve-month-ahead forecasts of the three-
month T-bill yield from Blue Chip Financial Forecasts and semiannual data on the average expected three-month T-bill
yield six to eleven years hence from the same source. See Kim and Orphanides (2012) for details.

23The data is available at www.federalreserve.gov.
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Six-month forecast One-year forecast
Full forecast period

Mean RMSE Mean RMSE

Random walk 16.51 84.11 33.43 150.27
KW model 4.09 64.32 45.90 126.56
CR model -2.14 65.62 10.23 128.64
B-CR model 3.28 62.70 22.23 123.98

Six-month forecast One-year forecast
Normal forecast period

Mean RMSE Mean RMSE

Random walk 20.71 94.19 40.73 165.87
KW model -3.40 69.68 35.62 132.67
CR model -0.33 72.08 16.41 141.20
B-CR model 2.57 69.97 24.00 136.56

Six-month forecast One-year forecast
ZLB forecast period

Mean RMSE Mean RMSE

Random walk 0.00 0.00 0.00 0.00
KW model 33.55 36.21 92.94 93.59
CR model -9.26 28.37 -18.10 32.24
B-CR model 6.06 11.52 14.09 19.10

Table 5: Summary Statistics for Target Federal Funds Rate Forecast Errors.

Summary statistics of the forecast errors—mean and root mean-squared errors (RMSEs)—of the target

overnight federal funds rate six months and one year ahead. The forecasts are weekly. The top panel covers

the full forecast period that starts on January 6, 1995, and runs until June 29, 2012, for the six-month forecasts

(913 forecasts) and until December 30, 2011, for the one-year forecasts (887 forecasts). The middle panel coves

the normal forecast period from January 6, 1995, to December 12, 2008, 728 forecasts. The lower panel covers

the zero lower bound forecast period that starts on December 19, 2008, and runs until June 29, 2012, for the

six-month forecasts (185 forecasts) and until December 30, 2011, for the one-year forecasts (159 forecasts). All

measurements are expressed in basis points.

13 years from 1995 through 2008 we should anticipate to be able to document essentially identical

performance along most dimensions, while we could hope to establish some superior performance for

the shadow-rate model in the years since 2009 in terms of forecasting future policy rates up to two

years ahead.

The summary statistics for the forecast errors relative to the subsequent realizations of the target

overnight federal funds rate set by the FOMC are reported in Table 5, which also contains the forecast

errors obtained using a random walk assumption. We note the strong forecast performance of the

KW model relative to the CR model during the normal period,24 while it is equally obvious that the

KW model underperforms grossly during the ZLB period since December 19, 2008. As expected, the

24As noted earlier, this is not an entirely fair race as the KW model is not estimated on a rolling real-time basis
unlike the other models.
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Figure 5: Forecasts of the Target Overnight Federal Funds Rate.

Forecasts of the target overnight federal funds rate one year ahead from the CR and B-CR model. Subsequent

realizations of the target overnight federal funds rate are included, so at date t, the figure shows forecasts as

of time t and the realization from t plus one year. The forecast data are weekly observations from January 6,

1995, to December 28, 2012.

CR and B-CR models exhibit very similar performance during the normal period, while the B-CR

model stands out in the most recent ZLB period.25

Figure 5 compares the forecasts at the one-year horizon from the CR and B-CR models to the

subsequent target rate realizations. For the CR model, the deterioration in forecast performance

is not really detectable until after the August 2011 FOMC meeting when explicit forward guidance

was first introduced. Since the CR model mitigates finite-sample bias in the estimates of the mean-

reversion matrix KP by imposing a unit-root property on the Nelson-Siegel level factor, it suggests

that the recent deterioration for the CR model must be caused by other more fundamental factors.

4.3 Decomposing Ten-Year Yields

One important use for affine DTSMs has been to separate longer-term yields into a short-rate ex-

pectations component and a term premium. Here, we document the different decompositions of

25As another robustness check, we used the estimated parameters of the CR model combined with filtering from the
B-CR model to generate an alternative set of short rate forecasts. The results are very close to those shown in Table 5
for the B-CR model and hence not reported.
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(a) Expected short rate.
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(b) Term premium.

Figure 6: Ten-Year Expected Short Rate and Term Premium

Panel (a) provides real-time estimates of the average policy rate expected over the next ten years from the

CR and B-CR model. Panel (b) shows the corresponding ten-year term premium series. The data cover the

period from January 6, 1995, to December 28, 2012.

the ten-year Treasury yield implied by the CR and B-CR model. To do so, we calculate, for each

end date during our rolling re-estimation period, the average expected path for the overnight rate,

(1/τ)
∫ t+τ

t
EP

t [rs]ds, as well as the associated term premium—assuming the two components sum to

the fitted bond yield, ŷt(τ).
26

Figure 6 shows the real-time decomposition of the ten-year Treasury yield into a policy expecta-

tions component and a term premium component according to the CR and B-CR models. Studying

the time-series patterns in greater detail, we first note the similar decompositions from the CR and

B-CR model until December 2008—with the notable exception of the 2002-2004 period when yields

were low the last time. Second, we see some smaller discrepancies across these two model decompo-

sitions in the period between December 2008 and August 2011. Finally, we point out the sustained

difference in the extracted policy expectations and term premiums in the period since August 2011.

These results suggest that at least through late 2011, the ZLB did not greatly effect the term

premium decomposition. To provide a concrete example of this, we repeat the analysis in CR of the

Treasury yield response to eight key announcements by the Fed regarding its first large-scale asset

purchase (LSAP) program. Table 6 shows the CR and B-CR model decompositions of the 10-year

U.S. Treasury yield on these eight dates and the total changes. The yield decompositions on these

dates are quite similar for both of these models, though the B-CR model ascribes a bit more of the

26The details of these calculations for both the CR and B-CR model are provided in Appendices A and B.
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Decomposition from models Ten-year
Announcement

Model Avg. target rate Ten-year Treasury
date

next ten years term premium
Residual

yield

CR -20 0 -2
Nov. 25, 2008

B-CR -10 -10 0
-21

CR -10 -10 -2
Dec. 1, 2008

B-CR -21 2 -3
-22

CR -7 -7 -3
Dec. 16, 2008

B-CR -17 3 -3
-17

CR 6 1 5
Jan. 28, 2009

B-CR 9 -2 5
12

CR -14 -23 -15
Mar. 18, 2009

B-CR -17 -20 -14
-52

CR -1 1 6
Aug. 12, 2009

B-CR -4 4 6
6

CR -5 2 1
Sep. 23, 2009

B-CR -3 1 1
-2

CR -1 5 3
Nov. 4, 2009

B-CR -1 5 3
7

CR -53 -29 -7
Total net change

B-CR -65 -17 -7
-89

Table 6: Decomposition of Responses of Ten-Year U.S. Treasury Yield.

The decomposition of responses of the ten-year U.S. Treasury yield on eight LSAP announcement dates into

changes in (i) the average expected target rate over the next ten years, (ii) the ten-year term premium, and

(iii) the unexplained residual based on the CR and B-CR model of U.S. Treasury yields. All changes are

measured in basis points.

changes in yields to a signaling channel effect adjusting short-rate expectations.

4.4 Assessing Recent Shifts in Near-Term Monetary Policy Expectations

In this section, we attempt to assess the extent to which the models are able to capture recent shifts

in near-term monetary policy expectations.

To do so, we compare the variation in the models’ one- and two-year short rate forecasts since

2007 to the rates on one- and two-year federal funds futures contracts as shown in Figure 7.27 We

note that the existence of time-varying risk premiums even in very short-term federal funds futures

contracts is well documented (see Piazzesi and Swanson 2008). However, the risk premiums in such

short-term contracts are small relative to the sizeable variation over time observed in Figure 7. As

27The futures data are from Bloomberg. The one-year futures rate is the weighted average of the rates on the 12-
and 13-month federal funds futures contracts, while the two-year futures rate is the rate on the 24-month federal funds
futures contract through 2010, and the weighted average of the rates on the 24- and 25-month contracts since then.
Absence of data on the 24-month contracts prior to 2007 determines the start date for the analysis.
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(a) One-year projections.
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(b) Two-year projections.

Figure 7: Comparison of Short Rate Projections.

Panel (a) illustrates the one-year short rate projections from the CR and B-CR model with a comparison to

the rates on one-year federal funds futures. Panel (b) shows the corresponding results for a two-year projection

period with a comparison to the rates on two-year federal funds futures. The data are weekly covering the

period from January 5, 2007, to December 28, 2012.

a consequence, we interpret the bulk of the variation from 2007 to 2009 as reflecting declines in

short rate expectations. Furthermore, since August 2011, most evidence—including our own shown

in Figure 6—suggests that risk premiums have been significantly depressed, likely to a point that a

zero-risk-premium assumption for the futures contracts discussed here is a satisfactory approximation.

Combined these observations suggest that it is defensible for most of the shown six-year period to

map the models’ short rate projections to the rates on the federal funds futures contracts without

adjusting for their risk premiums.

At the one- and two-year forecast horizons, the correlations between the CR model short rate

forecasts and the federal funds futures rates are 0.89 and 0.70, respectively. The corresponding

correlations for the B-CR model are 0.97 and 0.90, respectively. For the CR model, the distance

to the futures rates measured by the root mean squared errors (RMSE) are 89.18 and 139.93 basis

points at the one- and two-year horizon, respectively, while for the B-CR model the corresponding

RMSEs are 46.53 and 84.77 basis points, respectively. Thus, both measured by correlations and

by a distance metric, the B-CR model short rate projections appears to be better aligned with the

information reflected in rates on federal funds futures than the projections generated by the standard

CR model, and this superior performance is particularly clear since August 2011.
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5 Conclusion

In this paper, we study the performance of a standard Gaussian DTSM of U.S. Treasury yields and

its equivalent shadow-rate version. This provides us with a clean read on the merits of casting a

standard model as a shadow-rate model to respect the ZLB of nominal yields.

We find that the standard model performed well until the end of 2008, while it showed some signs

of performance deterioration until August 2011. For the period since then we document notable

underperformance of the standard model.

In the current near-ZLB yield environment, we find that the shadow-rate model provides superior

in-sample fit, matches the compression in yield volatility unlike the standard model, and delivers

better real-time short rate forecasts. Thus, while one could expect the regular model to get back

on track as soon as short- and medium-term yields rise from their current low levels, our findings

suggest that, in the meantime, shadow-rate models offer a tractable way of mitigating the problems

related to the ZLB constraint on nominal yields. Since shadow-rate models collapse to the regular

model away from the ZLB, we recommend their use not only when yields are low, but in general.

Finally, we stress that the difference between yield curve dynamics in the normal period and

the most recent period with yields near the ZLB could reflect deeper nonlinearities in the factor

structure, or maybe even a regime-switch in the model dynamics, that are beyond the static affine

dynamic structure assumed in this paper. These remain open questions and we leave them for future

research.
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Appendix A: Formula for Policy Expectations in AFNS and B-AFNS
Models

In this appendix, we detail how conditional expectations for future policy rates are calculated within AFNS and

B-AFNS models.

In affine models, in general, the conditional expected value of the state variables is calculated as

E
P
t [Xt+τ ] = (I − exp(−K

P
τ ))θP + exp(−K

P
τ )Xt.

In AFNS models, the instantaneous short rate is defined as

rt = Lt + St.

Thus, the conditional expectation of the short rate is

E
P
t [rt+τ ] = E

P
t [Lt+τ + St+τ ] =

(

1 1 0
)

E
P
t [Xt+τ ].

In B-AFNS models, the instantaneous shadow rate is defined as

st = Lt + St.

In turn, the conditional expectation of the shadow-rate process is

E
P
t [st+τ ] = E

P
t [Lt+τ + St+τ ] =

(

1 1 0
)

E
P
t [Xt+τ ].

Now, the conditional covariance matrix of the state variables is given by28

V
P
t [Xt+τ ] =

∫ τ

0

e
−KP sΣΣ′

e
−(KP )′s

ds.

Hence, the conditional covariance of the shadow-rate process is

V
P
t [st+τ ] =

(

1 1 0
)

V
P
t [Xt+τ ]









1

1

0









.

Thus, following equation (65) in Kim and Singleton (2012), the conditional expectation of the short rate in the B-AFNS

models,

rt = max(0, st),

is given by

E
P
t [rt+τ ] =

∫

∞

−∞

f(rt+τ |Xt)drt+τ =

∫

∞

0

f(st+τ |Xt)dst+τ

= E
P
t [st+τ ]N

(

EP
t [st+τ ]

√

V P
t [st+τ ]

)

+
1√
2π

√

V P
t [st+τ ] exp

(

− EP
t [st+τ ]

2

V P
t [st+τ ]

)

.

28We calculate the conditional covariance matrix using the analytical solutions provided in Fisher and Gilles (1996).
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Appendix B: Analytical Formulas for Policy Expectations and Term
Premiums in the CR Model

In this appendix, we derive the analytical formulas for policy expectations and term premiums within the CR

model.

For a start, the term premium is defined as

TPt(τ ) = yt(τ )−
1

τ

∫ t+τ

t

E
P
t [rs]ds.

In the CR model, as in any AFNS model, the instantaneous short rate is defined as

rt = Lt + St,

while the specification of the P -dynamics is given by









dLt

dSt

dCt









=









10−7 0 0

κP
21 κP

22 κP
23

0 0 κP
33

























0

θP2

θP3









−









Lt

St

Ct

















dt+









σ11 0 0

0 σ22 0

0 0 σ33

















dW
L,P
t

dW
S,P
t

dW
C,P
t









.

Thus, the mean-reversion matrix is given by

K
P =









10−7 0 0

κP
21 κP

22 κP
23

0 0 κP
33









.

Its matrix exponential can be calculated analytically:

exp(−K
P
τ ) =









1 0 0

−κP
21

1−e
−κ

P
22

τ

κP
22

e−κP

22
τ −κP

23
e
−κ

P
33

τ
−e

−κ
P
22

τ

κP
22

−κP
33

0 0 e−κP

33
τ









.

Now, the conditional mean of the state variables is

E
P
t [Xt+τ ] = θ

P +









1 0 0

−κP
21

1−e
−κ

P
22

τ

κP
22

e−κP

22
τ −κP

23
e
−κ

P
33

τ
−e

−κ
P
22

τ

κP
22

−κP
33

0 0 e−κP

33
τ

















Lt

St − θP2

Ct − θP3









=









Lt

θP2 − κP
21

1−e
−κ

P
22

τ

κP
22

Lt + e−κP

22
τ (St − θP2 )− κP

23
e
−κ

P
33

τ
−e

−κ
P
22

τ

κP
22

−κP
33

(Ct − θP3 )

θP3 + e−κP

33
τ (Ct − θP3 )









.

In order to get back to the term premium formula, we note that the conditional expectation of the instantaneous short

rate process is given by

E
P
t [rs] = E

P
t [Ls + Ss]

=
(

1− κ
P
21

1− e−κP

22
(s−t)

κP
22

)

Lt + θ
P
2 + e

−κP

22
(s−t)(St − θ

P
2 )− κ

P
23

e−κP

33
(s−t) − e−κP

22
(s−t)

κP
22 − κP

33

(Ct − θ
P
3 ).
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Next, we integrate from t to t+ τ :

∫ t+τ

t

E
P
t [rs]ds =

∫ t+τ

t

([

1− κ
P
21

1− e−κP

22
(s−t)

κP
22

]

Lt + θ
P
2 + e

−κP

22
(s−t)(St − θ

P
2 )

−κ
P
23

e−κP

33
(s−t) − e−κP

22
(s−t)

κP
22 − κP

33

(Ct − θ
P
3 )
)

ds

= θ
P
2 τ +

(

1− κP
21

κP
22

)

τLt +
κP
21

κP
22

Lt

∫ t+τ

t

e
−κP

22
(s−t)

ds

+(St − θ
P
2 )

∫ t+τ

t

e
−κP

22
(s−t)

ds

− κP
23

κP
22 − κP

33

(Ct − θ
P
3 )

∫ t+τ

t

(

e
−κP

33
(s−t) − e

−κP

22
(s−t)

)

ds

= θ
P
2 τ +

(

1− κP
21

κP
22

)

τLt − κP
21

κP
22

Lt

[ 1

κP
22

e
−κP

22
(s−t)

]t+τ

t

+(St − θ
P
2 )
[−1

κP
22

e
−κP

22
(s−t)

]t+τ

t

− κP
23

κP
22 − κP

33

(Ct − θ
P
3 )
[−1

κP
33

e
−κP

33
(s−t) +

1

κP
22

e
−κP

22
(s−t)

]t+τ

t

= θ
P
2 τ +

(

1− κP
21

κP
22

)

τLt +
κP
21

κP
22

1− e−κP

22
τ

κP
22

Lt +
1

κP
22

(St − θ
P
2 )(1− e

−κP

22
τ )

− κP
23

κP
22 − κP

33

(Ct − θ
P
3 )
( 1

κP
33

[1− e
−κP

33
τ ]− 1

κP
22

[1− e
−κP

22
τ ]
)

.

The relevant term to go into the term premium formula is

1

τ

∫ t+τ

t

E
P
t [rs]ds = θ

P
2 +

(

1− κP
21

κP
22

)

Lt +
κP
21

κP
22

1− e−κP

22
τ

κP
22τ

Lt +
1− e−κP

22
τ

κP
22τ

(St − θ
P
2 )

− κP
23

κP
22 − κP

33

(1− e−κP

33
τ

κP
33τ

− 1− e−κP

22
τ

κP
22τ

)

(Ct − θ
P
3 ).

The final expression for the term premium is given by

TPt(τ ) = yt(τ )− 1

τ

∫ t+τ

t

E
P
t [rs]ds

= Lt +
1− e−λτ

λτ
St +

(1− e−λτ

λτ
− e

−λτ
)

Ct −
A(τ )

τ

−θ
P
2 −

(

1− κP
21

κP
22

)

Lt −
κP
21

κP
22

1− e−κP

22
τ

κP
22τ

Lt −
1− e−κP

22
τ

κP
22τ

(St − θ
P
2 )

+
κP
23

κP
22 − κP

33

(1− e−κP

33
τ

κP
33τ

− 1− e−κP

22
τ

κP
22τ

)

(Ct − θ
P
3 )

=
κP
21

κP
22

(

1− 1− e−κP

22
τ

κP
22τ

)

Lt +
(1− e−λτ

λτ
− 1− e−κP

22
τ

κP
22τ

)

St

+
(1− e−λτ

λτ
− e

−λτ +
κP
23

κP
22 − κP

33

[1− e−κP

33
τ

κP
33τ

− 1− e−κP

22
τ

κP
22τ

])

Ct

−
(

1− 1− e−κP

22
τ

κP
22τ

)

θ
P
2 − κP

23

κP
22 − κP

33

(1− e−κP

33
τ

κP
33τ

− 1− e−κP

22
τ

κP
22τ

)

θ
P
3 − A(τ )

τ
.

28



References

Andersen, Torben G. and Luca Benzoni, 2010, “Do Bonds Span Volatility Risk in the U.S. Treasury

Market? A Specification Test for Affine Term Structure Models,” Journal of Finance, Vol. 65,

No. 2, 603-653.

Andersen, Torben G., Tim Bollerslev, Frank X. Diebold, and P. Labys, 2003, “Modeling and Fore-

casting Realized Volatility,” Econometrica, Vol. 71, 579-626.

Bauer, Michael D., Glenn D. Rudebusch, and Jing (Cynthia) Wu, 2012, “Correcting Estimation

Bias in Dynamic Term Structure Models,” Journal of Business and Economic Statistics, Vol.

30, No. 3, 454-467.

Black, Fisher, 1995, “Interest Rates as Options,” Journal of Finance, Vol. 50, No. 7, 1371-1376.

Bomfim, Antulio N., 2003, “‘Interest Rates as Options:’ Assessing the markets’ view of the liquidity

trap,” Working Paper 2003-45, Finance and Economics Discussion Series, Federal Reserve

Board, Washington, D.C.

Christensen, Jens H. E., Francis X. Diebold, and Glenn D. Rudebusch, 2011, “The Affine Arbitrage-

Free Class of Nelson-Siegel Term Structure Models,” Journal of Econometrics, Vol. 164, 4-20.

Christensen, Jens H. E. and Glenn D. Rudebusch, 2012, “The Response of Interest Rates to U.S.

and U.K. Quantitative Easing,” Economic Journal, Vol. 122, F385-F414.

Christensen, Jens H. E. and Glenn D. Rudebusch, 2013, “Estimating Shadow-Rate Term Structure

Models with Near-Zero Yields,” Working Paper 2013-07, Federal Reserve Bank of San Francisco.

Collin-Dufresne, Pierre, Robert S. Goldstein, and Chris S. Jones, 2009, “Can Interest Rate Volatility

Be Extracted from the Cross-Section of Bond Yields?,” Journal of Financial Economics, Vol.

94, 47-66.

Dai, Qiang and Kenneth J. Singleton, 2002, “Expectations Puzzles, Time-Varying Risk Premia, and

Affine Models of the Term Structure,” Journal of Financial Economics, Vol. 63, 415-441.

Diebold, Francis X. and Glenn D. Rudebusch, 2013, Yield Curve Modeling and Forecasting: The

Dynamic Nelson-Siegel Approach, Princeton, NJ: Princeton University Press.

Duffee, Gregory R., 2002, “Term Premia and Interest Rate Forecasts in Affine Models,” Journal of

Finance, Vol. 57, 405-443.

Duffie, Darrell and Rui Kan, 1996, “A Yield-Factor Model of Interest Rates,” Mathematical Finance,

Vol. 6, 379-406.

29



Fisher, Mark and Christian Gilles, 1996, “Term Premia in Exponential-Affine Models of the Term

Structure,” Manuscript, Board of Governors of the Federal Reserve System.

Gorovoi, Viatcheslav and Vadim Linetsky, 2004, “Black’s Model of Interest Rates as Options, Eigen-

function Expansions and Japanese Interest Rates,” Mathematical Finance, Vol. 14, No. 1,

49-78.

Gürkaynak, Refet S., Brian Sack, and Jonathan H. Wright, 2007, “The U.S. Treasury Yield Curve:

1961 to the Present,” Journal of Monetary Economics, Vol. 54, 2291-2304.

Ichiue, Hibiki and Yoichi Ueno, 2007, “Equilibrium Interest Rates and the Yield Curve in a Low

Interest Rate Environment,” Working Paper 2007-E-18, Bank of Japan.

Ichiue, Hibiki and Yoichi Ueno, 2013, “Estimating Term Premia at the Zero Bound: An Analysis

of Japanese, US, and UK Yields,” Working Paper 2013-E-8, Bank of Japan.

Jacobs, Kris and Lofti Karoui, 2009, “Conditional Volatility in Affine Term Structure Models:

Evidence from Treasury and Swap Markets,” Journal of Financial Economics, Vol. 91, 288-

318.

Kim, Don H. and Athanasios Orphanides, 2012, “Term Structure Estimation with Survey Data

on Interest Rate Forecasts,” Journal of Financial and Quantitative Analysis, Vol. 47, No. 1,

241-272.

Kim, Don H. and Kenneth J. Singleton, 2012, “Term Structure Models and the Zero Bound: An

Empirical Investigation of Japanese Yields,” Journal of Econometrics, Vol. 170, 32-49.

Kim, Don H. and Jonathan H. Wright, 2005, “An Arbitrage-Free Three-Factor Term Structure

Model and the Recent Behavior of Long-Term Yields and Distant-Horizon Forward Rates,”

Working Paper Finance and Economics Discussion Series 2005-33, Board of Governors of the

Federal Reserve System.

Krippner, Leo, 2013, “A Tractable Framework for Zero Lower Bound Gaussian Term Structure

Models,” Discussion Paper 2013-02, Reserve Bank of New Zealand.

Nelson, Charles R. and Andrew F. Siegel, 1987, “Parsimonious Modeling of Yield Curves,” Journal

of Business, Vol. 60, 473-489.

Piazzesi, Monika and Eric T. Swanson, 2008, “Futures Prices as Risk-Adjusted Forecasts of Mone-

tary Policy,” Journal of Monetary Economics, Vol. 55, 677-691.

30



Ueno, Yoichi, Naohiko Baba, and Yuji Sakurai, 2006, “The Use of the Black Model of Interest Rates

as Options for Monitoring the JGB Market Expectations,” Working Paper 2006-E-15, Bank of

Japan.

31


	Abstract
	1 Introduction
	Figure 1: Treasury Yields Since 2005
	2 A Standard Gaussian Term Structure Model
	2.1 The General Model
	2.2 An Empirical Affine Model
	Table 1: Parameter Estimates for the CR Model
	2.3 Negative Short-Rate Projections in Standard Models
	3 A Shadow-Rate Model
	Figure 2: Probability of Negative Short Rates Since 2008.
	3.1 The Option-Based Approach to the Shadow-Rate Model
	3.2 The Shadow-Rate B-CR Model
	Table 2: Parameter Estimates for the B-CR Model
	3.3 How Good is the Option-Based Approximation?
	Table 3: Approximation Errors in Yields for Shadow-Rate Model
	Figure 3: Value of Option to Hold Currency.
	3.4 Measuring the Effect of the ZLB
	Table 4: Summary Statistics of the Fitted Errors.
	4 Comparing Affine and Shadow-Rate Models
	4.1 In-Sample Fit and Volatility
	Figure 4: Three-Month Conditional Volatility of Two-Year Yield Since 2009.
	4.2 Forecast Performance
	Table 5: Summary Statistics for Target Federal Funds Rate Forecast Errors.
	Figure 5: Forecasts of the Target Overnight Federal Funds Rate.
	4.3 Decomposing Ten-Year Yields
	Figure 6: Ten-Year Expected Short Rate and Term Premium
	Table 6: Decomposition of Responses of Ten-Year U.S. Treasury Yield.
	4.4 Assessing Recent Shifts in Near-Term Monetary Policy Expectations
	Figure 7: Comparison of Short Rate Projections
	5 Conclusion
	Appendix A: Formula for Policy Expectations in AFNS and B-AFNSModels
	Appendix B: Analytical Formulas for Policy Expectations and TermPremiums in the CR Model
	References



